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Abstract

Genome-wide association studies (GWAS) have markedly advanced our understanding of the genetics of Parkinson’s disease (PD),
but they currently do not account for the full heritability of PD. In many cases it is difficult to unambiguously identify a specific
gene within each locus because GWAS does not provide functional information on the identified candidate loci. Here we present an
integrative approach that combines transcriptome-wide association study (TWAS) with high-throughput neuronal dysfunction analyses
in Drosophila to discover and validate candidate PD genes. We identified 160 candidate genes whose misexpression is associated with
PD risk via TWAS. Candidates were validated using orthogonal in silico methods and found to be functionally related to PD-associated
pathways (i.e. endolysosome). We then mimicked these TWAS-predicted transcriptomic alterations in a Drosophila PD model and
discovered that 50 candidates can modulate α-Synuclein(α-Syn)-induced neurodegeneration, allowing us to nominate new genes in
previously known PD loci. We also uncovered additional novel PD candidate genes within GWAS suggestive loci (e.g. TTC19, ADORA2B,
LZTS3, NRBP1, HN1L), which are also supported by clinical and functional evidence. These findings deepen our understanding of PD, and
support applying our integrative approach to other complex trait disorders.

Introduction
Genome-wide association studies (GWAS) have discovered dozens
of genetic susceptibility loci associated with late-onset Parkinson
disease (PD) and have revealed potentially causal genes (1,2).
Despite remarkable advances in identifying genetic factors con-
tributing to PD, it is estimated that current PD GWAS data only
account for 16–36% of PD heritability (2). Thus, revealing the miss-
ing heritability would require much larger GWAS meta-analysis
and approaches to reveal the contributions of rare variants (2,3).
An alternative strategy is to use orthogonal methods that would
reveal causal genes among suggestive GWAS signals and thus
circumvent the lack of power in current GWAS datasets. An
additional limitation of GWAS data is that it does not reveal the
mechanisms through which variants impart disease risk (4–6).
One way to minimize this gap is to integrate GWAS risk loci and
quantitative trait loci to delineate causal genes and potential
mechanisms by which disease risk is mediated.

GWAS risk variants often locate in regulatory regions and can
ultimately influence the trait by affecting gene expression (7,8).
Several publicly available resources have facilitated the study of
gene expression across multiple human tissues, for instance the
Genotype-Tissue Expression (GTEx) project, which provides geno-
types and gene expression data (9). Computational approaches
have been developed to integrate GWAS variant data with

expression quantitative trait loci (eQTLs) to probe the link from
single-nucleotide polymorphism (SNP) to gene expression to com-
plex traits. Previous studies have deployed such methodologies to
ascribe putative risk-associated genes to GWAS loci for PD, leading
to the identification of many novel susceptibility genes for PD
(10–13). However, in most cases, we do not know whether these
genes modulate disease outcome due to the lack of systematic
experimental validation.

In this study, we present an integrative approach that combines
the computational analyses of genes increasing risk for PD and
neuronal dysfunction assays in vivo. We used a transcriptome-
wide association study (TWAS) method to prioritize genes whose
misexpression correlates with PD and leveraged clinical data
to further characterize them. Using high-throughput functional
assays that assess neuronal dysfunction both quantitatively and
longitudinally, we nominated 86 candidates for experimental val-
idation in a well-established PD Drosophila model (14,15). These
assays revealed that manipulating 50 candidates can amelio-
rate or aggravate neuronal dysfunction caused by human α-
Synuclein(α-Syn). Remarkably, we found 27 candidates had con-
gruent in silico (TWAS) and in vivo effects on PD. Interestingly,
some of these candidates map to GWAS suggestive loci, while
others were not the leading gene (defined as the closest gene
to the corresponding significant variant) under a recognized PD
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Figure 1. Integrative approach combining TWAS and in vivo functional assays to identify PD genes. (A) TWAS was used to identify potential PD
risk-associated genes using multi-tissue eQTL weights as predictive models followed by orthogonal in silico validation (Focus, Coloc, etc.). (B) Further
assessment of candidate genes associated to PD pathology using blood transcriptome and clinical data from PD patients and controls. (C) Experimental
validation of PD candidate genes using high-throughput neuronal dysfunction assay platform in Drosophila PD model, complemented with longitudinal
differentially expressed gene analysis and PPI network integration.

GWAS locus. Together, these results show that this multilayered
approach is a powerful method to nominate novel PD risk genes
and systematically validate them in vivo, and suggest that it can be
applied successfully to other GWAS datasets in which significant
signals only partially account for the genetic heritability.

Results
Overview
Our multilayered approach first nominated 160 potential PD risk-
associated genes through multi-tissue TWAS (Fig. 1A). To assess
the robustness of those computationally predicted candidate PD
genes, we used complementary methods including colocalization
analysis and fine-mapping of TWAS association to corroborate
their association to increased PD. We then investigated their
potential to inform biomarkers for PD risk and connection to
PD-related clinical traits, which further support many of our
candidate genes’ relevance to the disease (Fig. 1B). Finally, using

a high-throughput platform, we tested our candidate PD genes in
a well-established α-Syn Drosophila model and found 50 out of 160
can modulate neurodegeneration in vivo (Fig. 1C).

TWAS integrate PD GWAS and gene expression
data across multiple tissues
Since a limitation of GWAS is that it only pinpoints risk loci
without identifying genes, we used TWAS to integrate GWAS and
gene expression to link gene expression alterations with increased
PD risk. We performed TWAS using the PD GWAS summary statis-
tics (without 23andMe) from Nalls et al. (33 674 cases (18 618
proxy cases from UK Biobank) and 449 056 controls) and GTEx
multi-tissue expression reference weights (see Data availability)
to identify cis-regulated genes that associate with PD risk (see
Materials and Methods). TWAS integrate the information in a ref-
erence panel, where genotype and gene expression from the same
individuals are available, and the PD GWAS summary statistics to
impute the gene expression onto GWAS cohorts and model the
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association between genes and the trait of interest (see Materials
and Methods). We used the FUSION software to fit predictive
models and compute TWAS association statistics (16). Using GTEx
multi-tissue reference, 235 583 tissue-specific models were used
for TWAS prediction. We observed nearly 20–30% improvement
in prediction accuracy from Elastic net (ENET) and least abso-
lute shrinkage and selection operator (LASSO) in comparison
to other predictive models (Supplementary Material, Fig. S1). We
found that the average prediction accuracy (normalized R2) across
all predictive models is 56%, which is consistent with previous
results and indicate a large amount of cis-regulated expression
can be accounted for by these predictive models (10,16,17).

To identify candidate genes with significant transcriptome-
wide PD associations, we performed multiple hypothesis testing
using the Bonferroni correction and selected the nominal TWAS
P-value significance at 5 × 10−5 to reduce the false positive rate in
various tissues with distinct sizes. Based on these TWAS models,
we found 160 genes whose imputed expression, across multiple
tissues, significantly correlated with increased PD risk (Fig. 2A;
Supplementary Material, Table S1). Among these genes 118 are
protein coding and include known PD genes such as SNCA, LRRK2,
CTSB, CRHR1, DYRK1A and TMEM175. In addition to known PD
genes, this analysis also revealed other candidate genes (including
NSF, ARL17B, NUPL2, P2RY12, ASH1L, PRSS53, STX4, BCKDK, FMNL1)
whose expression associated with PD but are not the closest
gene to the corresponding significant variant (see pathway anal-
ysis in Discussion). Furthermore, as we adopted the suggestive
GWAS threshold, our TWAS analysis highlighted genes with only
suggestive evidence of GWAS association. These genes include
TTC19, FAHD1, ADORA2B, PNLIPRP3 and HN1L. These results are
consistent with previous findings that unearthed disease causal
genes with suggestive significant GWAS associations (18–20).

Orthogonal computational methods further
corroborate TWAS candidate genes expressed in
relevant brain regions
To improve the robustness of the 160 TWAS-predicted PD
candidate genes, we used three orthogonal computational
approaches to generate corroborating evidence for their relevance
to PD. Since TWAS can identify multiple disease-associated genes
within the same locus, we sought to identify which ones are
conditionally independent. Applying joint and conditional tests
within their corresponding 1 Mb regions, we found that 108 genes
out of 160 were significantly associated with PD even when
analyzed jointly with genes in their corresponding loci (Fig. 2B;
Supplementary Material, Fig. S2 and Table S2). Next, we further
assessed if both PD GWAS signals and eQTL signals were driven
by the same causal variants. We used the FUSION tool to compute
the probability of colocalization between the PD association signal
at these TWAS loci and eQTLs. We found that the GWAS and
eQTL signals colocalized for 81 genes of the 160 TWAS candidates
(Fig. 2C; Supplementary Material, Fig. S3 and Table S1) (16,21).
Lastly, to prioritize putatively causal genes based on TWAS gene-
trait association signals, we applied FOCUS (fine-mapping of
causal gene sets) to compute the refined TWAS statistics by taking
into account the correlation of linkage disequilibrium (LD) and the
SNP weights used in prediction into account (see Materials and
Methods)(22). We computed the posterior inclusion probability
(PIP) for genes at each TWAS region by taking cumulative sums of
PIP until 90%. This generated a list of 56 genes from 160 TWAS-
prioritized candidates, many of which fine-mapped at a handful
of shared GWAS loci (Supplementary Material, Table S3) due to
highly local patterns of LD. A total of 37 TWAS candidates were

significant across all three methods. Interestingly, the expression
of 35 of those 37 candidates was imputed via TWAS models
from brain-derived tissues which showed significant association
with PD (using LD score regression for specifically expressed
genes, LDSC-SEG) (Fig. 2D; Supplementary Material, Fig. S4) (23).
Therefore, the overrepresentation of these high confidence genes
in predictive models from brain-derived tissues implies a strong
connection to PD.

Candidate genes are altered in PD transcriptome
and correlated with PD traits
TWAS implies that the change in expression of the 160 candidates
is correlated with PD; thus, we checked if their expression were
altered in PD patient transcriptome. We evaluated their expres-
sion in whole-blood transcriptome of the Parkinson’s Progres-
sion Marker Initiative (PPMI) cohort (we used blood data because
there is no adequate available data from PD brain) and found
that 35 PD candidate genes nominated by our approach were
significantly dysregulated (adjusted P value < 0.05; see Materials
and Methods). This suggests that these 35 genes may potentially
constitute peripheral blood biomarkers to inform PD risk (Fig. 3A;
Supplementary Material, Table S5) (24).

To further establish the link of our TWAS candidate genes to
PD pathology, we measured the association of their expression
levels in brains of 93 individuals with PD traits studied in the
ROSMAP (Religious Order Study and Memory and Aging Project)
cohort meeting pathological criteria for a PD diagnosis. A total
of 72 controls were chosen as participants lacking a pathological
diagnosis of PD or Alzheimer’s disease (see Materials and Meth-
ods; Supplementary Material, Table S6) (25,26). The association
analysis was performed using a linear mixed model (R package
VariancePartition), which computes the proportion of variance
explained by gene expression association with five clinical traits
(tremor, rigidity, gait, bradykinesia, motor) related to PD (17,27).
Using this model, we found that 55 of the TWAS genes explained
around 5–20% of total variation in five PD-associated traits in
those selected samples (individuals with or without pathological
diagnosis of PD) after accounting for biological and technical
covariates (Supplementary Material, Fig. S5). Interestingly, 17 of
these 55 candidates were also dysregulated in PD blood transcrip-
tome (Fig. 3B), further strengthening their association to PD risk
as these potential biomarkers might also link to clinical traits of
the disease.

Neuronal dysfunction assays confirm the
potential of TWAS candidate genes to modify
neurodegeneration in vivo
As detailed above, 118 TWAS protein coding candidates are cor-
related with increased risk in PD, and we also note that many of
them are dysregulated in PD blood transcriptome or their mis-
expression can be associated with PD-related motor defects. To
further validate the potential role played by the TWAS candidates
in PD-associated neurodegeneration, we assessed whether these
candidate genes could modulate α-Syn induced neurodegenera-
tion in vivo. We used a well-established automated assay that
quantitatively assesses neuronal dysfunction using behavioral
outputs based on the Drosophila negative geotaxis response (28–
30). For this study, we used a well-characterized PD Drosophila
model that expresses human wild-type α-Syn in all neurons
(see Materials and Methods) (14,15). This PD model manifests
late onset, progressive behavioral impairments, thereby allowing
assessment of neuronal dysfunction over time as the animals age.
In this model, we tested loss of function and/or overexpression
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Figure 2. Combination of TWAS with orthogonal gene fine mapping approaches reveals a set of consistent PD candidate genes. (A) Manhattan plot
showing the TWAS PD hits. Chart indicates the genomic position of each gene on the X-axis versus − log10(P-value) on the Y axis. The 160 genes shown
as triangles have both a TWAS and GWAS P-value of <5e-5 (dotted line). Empty circles represent genes with a TWAS P < 5e-5 but a GWAS P > 5e-5 (not
considered as TWAS candidates in this study). Gene names are only displayed for the most significant ones in each locus. (B) Bar plot displaying 108 TWAS
candidate genes that are independent following joint conditional testing. Each bar shows the –log(P) of the probability of conditioning GWAS association
on the corresponding gene. Inset shows an example plot of the PRSS36 locus, where PD GWAS signals before conditioning (gray) and after removing the
effect of PRSS36 expression (black) are shown. This analysis shows that the association is explained by PRSS36 (with asterisk), and RP11-388 M20.9 (with
triangle) that is marginally TWAS significant. (C) Ternary plot showing the results of the colocalization test (Coloc) for the TWAS PD candidates. A total
of 81 TWAS candidate genes whose GWAS signals colocalized with cis-eQTL signals are shown in black. Gray dots represent lack of colocalization. The
standard criteria of PP3 ± PP4 ≥ 0.8 and PP4/PP3 ≥ 2 were selected as colocalized variants on a candidate gene (black dot) (briefly: PP0, no causal variant,
PP1, causal variant for PD GWAS only, PP2, causal variant for eQTL only, PP3, two distinct causal variants in two different genes, PP4- one common
causal variant). (D) Upset plot summarizing all 160 TWAS candidate genes supported by three complimentary in silico methods (Joint/conditional test,
Coloc, FOCUS). The number of candidates whose imputation models were brain-derived is also indicated. A total of 37 genes are supported by all three
orthogonal in silico methods.
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Figure 3. Integration with transcriptomic and clinical data from PD
patients reveals TWAS candidates linked to PD pathology. (A) Volcano
plot showing genes dysregulated in PD blood transcriptome from PPMI
(adjusted P-value cutoff at 0.05—black). There are 35 TWAS candidates
that were significantly dysregulated in patients (names indicted in the
chart). (B) Result of applying a linear mixed model to correlate genes
expression with clinical traits (see Materials and Methods). Among the
35 TWAS genes dysregulated in patients, 18 of them shown correspond to
genes whose differences in expression are correlated with 5% or more of
the summed variance of the indicated clinical traits among defined PD
cases and controls.

alleles if available for the Drosophila homologs of the TWAS can-
didates (specific genotypes used for assays are summarized in
Supplementary Material, Table S7).

In total, 85 genes had Drosophila homologs and available strains.
We found that modulating the expression levels of 50 of these
genes could ameliorate or aggravate α-Syn-induced neuronal
dysfunction (Fig. 4A; Supplementary Material, Fig. S6). Our results
showed that 31 genes ameliorated the α-Syn-induced dysfunction
(29 when knocked down and 2 when overexpressed) while 19
enhanced the α-Syn-induced dysfunction when knocked down.
Among these genes, the knockdown of Drosophila homologs of
BCKDK, ELOVL7, FMNL1, PRSS36, MCCC1 and STX1B ameliorated
the neuronal dysfunction in α-Syn animals, while knockdown
of Drosophila homologs of IDUA, NSF, MAPT, TTC19 and LZTS3
exacerbated neuronal dysfunction in these models. Therefore,
these gene perturbation data indicate that these genes may play
roles in mechanisms underlying α-Syn-induced PD pathogenesis.
It is noteworthy that our candidate genes have a significant
enrichment of PD modifiers (hit rate: 58.8%; ∼P < 0.00001, Fisher),

thus strongly supporting the relevance of these targets in PD
pathology. As expected, these genes include previously identified
PD risk genes, but importantly they also include other genes
not previously associated to PD and highlight their potential to
modulate α-Syn-induced pathology. Note that PD is a complex
condition that may be linked to genetic risk factors unrelated to
α-Syn. However, we used a α-Syn model, which may lead to an
overrepresentation of PD modifiers that modulate α-Syn-induced
neurodegeneration while overlooking other risk factors.

We note that for genes identified through TWAS prediction and
modeling, the direction of effect estimate infers the covariance
between imputed gene expression and the GWAS trait (16,31).
As such, a positive effect suggests that increased expression of
the gene may increase PD risk, while a negative effect indicates
that decreased expression of the gene may increase PD risk.
Remarkably, the behavioral in vivo perturbation assays revealed
27 candidates where the effects were consistent with the TWAS
prediction, such that the direction of gene expression predicted to
increase PD risk in humans coincided with a similar perturbation
modulating α-Syn-induced neuronal dysfunction in flies (Fig. 4B;
Table 1; Supplementary Material, Table S8). Strikingly, opposing
the TWAS predicted pathogenic effect of 14 of these 27 genes
(HN1L, P2RY12, ASH1L, MCCC1, LRRK2, ADORA2B, PRSS53, BCKDK,
NUPL2, SCARB2, ELOVL7, FMNL1, STX1B, STX4) conferred neuropro-
tection in vivo, underscoring their therapeutic potential.

To deepen our mechanistic understanding of those concordant
TWAS candidates, we evaluated their transcriptome profiles with
time-series transcriptional data from the Drosophila PD model.
We leveraged longitudinal RNA-seq on the Drosophila PD model
and identified transcripts differentially expressed at each time
point (see Materials and Methods). Among the 27 TWAS candi-
date genes with concordant in silico (TWAS) and in vivo effects
on PD, we found that 13 of them were differentially expressed
genes in PD models relative to controls across one or multiple
time points (Fig. 4C; Supplementary Material, Table S9). Among
them, four genes (BCKDK, ELOVL7, P2RY12, PRSS53), whose over-
expression were predicted to increase PD via TWAS, showed ele-
vated expression levels in α-Syn flies, while three genes (ARL17A,
ARL17B, NSF), whose downregulation was correlated with PD risk,
had reduced expression levels. Here we highlight BCKDK, a mito-
chondrial kinase regulating amino acid catabolic pathways whose
mutations can cause autism and epilepsy as previously described
(32). We showed that knockdown of BCKDK conferred neuropro-
tection in vivo as we reversed the pathogenic effect predicted by
TWAS (Fig. 4A; Supplementary Material, Fig. S6). BCKDK expres-
sion was elevated in both PD Drosophila and human (blood) tran-
scriptomes, suggesting that its pathogenic response can also be
found in humans. These results might pinpoint distinct molecular
alterations that could help to design mechanistic investigations or
plan effective therapeutic interventions based on findings from
past and ongoing studies.

Discussion
As the size of GWAS studies for complex polygenic diseases
continues to expand, our ability to discover novel risk-associated
variants and genes has greatly exceeded our ability to interpret
and validate their biological functions. Several previous studies
also conducted TWAS to identify new associations to PD within
known PD loci, and some genes highlighted by these studies
overlapped with our TWAS candidates (e.g. ZSWIM7, LRRC37A2,
CD38, NUPL2, etc.) at known PD loci (10–13,33). However, they do
not provide experimental validation to investigate candidates’
potential to modulate PD pathology, and they focus mostly on
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Table 1. Concordant PD candidate genes with multi-layered evidence. The columns indicate (1)
TWAS Z-score; (2) joint and conditional test of TWAS signals; (3) expression imputed via models
from PD-relevant brain region/s; (4) fine-mapping of TWAS association in a locus; (5) colocalization
of a GWAS signal and an eQTL signal; (6) correlation with PD motor deficits; (7) dysregulated in PPMI
blood transcriptome; (8) modifier of α-syn induced neuronal dysfunction in vivo; (9) concordance
between in silico and in vivo (Drosophila) tests; (10) DEGs in brains of α-Syn Drosophila model. Top
panel built using the GWAS significant loci and bottom panel indicates the suggestive genome-wide
loci. Each criterion is assigned an equal weight of 1, with the priority score summing over of all
categories. Colored fields indicate that the gene meets the criteria
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Figure 4. High-throughput behavioral assay reveals TWAS candidates that can modify α-Syn-induced neuronal dysfunction in vivo. (A) The average
worsening or amelioration (%) of neuronal dysfunction measured as the loss in climbing speed of Drosophila expressing human α-Syn in the nervous
system together with the indicated allele in the fruit fly homolog of the gene shown. Control animals expressing α-Syn and a non-targeting RNAi in
the nervous system (elav-GAL4) are used as the reference. Error bars indicate standard deviation. All effects were statistically significant (P < 0.05) using
ANOVA applied to linear mixed effect model with spline regressions (see Materials and Methods). (B) A total of 27 TWAS candidates were concordant
between in silico (TWAS) and in vivo (Drosophila) effects. We considered as concordant those cases in which we observed a worsening of α-Syn-induced
neurodegeneration when mimicking TWAS prediction (red) and cases where we observed amelioration of α-Syn-induced neurodegeneration when
opposing TWAS prediction (green). (C) Circular plot for differentially expressed genes measured in a longitudinal RNA-seq experiment using brains of
UAS-alpha-synuclein flies and controls. Plot shows 13 concordant TWAS candidate genes whose fly homologs were differentially expressed in the PD
Drosophila model relative to controls are shown on the top panel, and the bottom panel shows the six time points (days) when samples were taken for
the longitudinal measurement of transcriptome profile. A green bar means the gene is upregulated in PD flies relative to controls, whereas a red bar
means the gene is downregulated. Curves connecting a gene and a time point indicate a gene is dysregulated at that time point.

significant loci, which could lead to overlooking potential targets
in suggestive loci. We present an integrative approach that com-
bines TWAS and neuronal dysfunction assays in a PD Drosophila
model to interrogate whether PD candidates could modulate
α-Syn-induced neuropathology. In total, we have identified 69
PD candidate genes in known GWAS loci (some of which were
not previously designated as the closest to the corresponding
variant) and 27 in GWAS suggestive loci, many of which were
further supported by orthogonal in silico methods and/or had
clinical relevance in human (Supplementary Material, Tables S10
and S11). To gauge the functional connectivity between these
TWAS candidates and assess which biological pathways they are
involved in, we performed network analysis using the String-
DB protein–protein interaction (PPI) network (34). We found that

many of the candidates (15 novel candidates in known loci and 9
in suggestive loci) were connected in the String network (P < 1e-
16) and coalesced around endolysosomal and lysosome-related
pathways known to be relevant for PD (Fig. 5) (35–37).

Note that some well-known PD susceptibility genes were not
identified (e.g. GBA, PARK2, PINK1, etc.) using our integrative
approach. One example is GBA that was identified by previous PD
GWAS but is not TWAS significant. The reason is that the GWAS
significant variant for GBA is rs76763715 (Nalls et al., GWAS),
which results in a coding variant that leads to the N370S substi-
tution in the GBA protein. This likely results in a partial loss of
function in the GBA protein independent of its level of expression.
Other well-known PD susceptibility genes (e.g. PARK2, PARK7,
FBXO7, PINK1, etc.) were also not nominated in this study since
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Figure 5. PPI network reveals that the candidates identified by our
integrative analysis are enriched in the lysosomal and endolysosomal
pathways. Candidates that showed a consistent effect between the TWAS
prediction and the in vivo modifier effect in Drosophila are shown with
a red outline in the network. Five significantly enriched pathways were
all closely related to endolysosomal biology. Pathways are labeled as
rectangular nodes with colored edges connecting them to the nodes
(candidate genes). The filling of the nodes represents their TWAS score
as a gradient.

they were identified using familial forms of PD and do not contain
functional common genetic variants that can be identified via
GWAS and/or TWAS.

As we altered the expression level of TWAS candidates
in vivo, we discovered that 50 candidates could ameliorate
or aggravate α-Syn-induced neuronal dysfunction. Impor-
tantly, we found 27 candidates (including 13 novel genes in
known PD GWAS loci and 6 in suggestive loci) were concordant
between TWAS-predicted effect and in vivo validation (Table 1;
Supplementary Material, Table S10), and 10 of them involve in the
endolysosomal pathway (Fig. 5). This convergence in directions
of effect to PD between computational and experimental
methods emphasizes the potential of our integrative approach
to discover disease causal genes. Remarkably, we also found
14 concordant candidates had therapeutic potential since they
could generate neuroprotection in vivo when opposing the TWAS
predicted pathogenic effect. These findings imply that our
integrative approach could identify genes that modulate the risk
of developing PD and that our strategy could be applied to a wide
range of complex traits for which GWAS data are available.

Materials and Methods
PD GWAS summary statistics
We performed TWAS using PD GWAS summary statistics from
Nalls et al. (2). The summary statistics include 15 056 PD cases,
18 618 UK Biobank proxy cases and 449 055 controls. Cohort infor-
mation and quality control were reported by Nalls et al. (2).

Transcriptome-wide association studies
TWAS is a method that leverages eQTL cohorts with expression
and genotype data to compute gene–trait associations for GWAS
datasets. We performed a GTEx multi-tissue TWAS using the
FUSION package (http://gusevlab.org/projects/fusion/) with pre-
computed gene expression weights (GTEx v7 multi-tissue expres-
sion) and GWAS summary statistics to estimate the association
of genes to PD (2,16). The detailed steps implemented in FUSION

are as follows: first, it estimates the heritability of gene expression
attributable to cis-SNPs within 1 Mb of gene TSS using GCTA soft-
ware (38). Only features with heritability of Bonferroni-corrected
P < 0.05 were retained for further analysis. Second, expression
predictive weights were computed by five different models: best
linear unbiased predictor, Bayesian sparse linear mixed model,
LASSO, Elastic Net and top SNPs. Cross-validation for each of the
desired models was performed, and the model with the largest
cross-validation R2 was chosen for imputing gene expression for
the GWAS. Lastly, the imputed expression–trait association was
estimated as TWAS statistics.

Additional FUSION parameters include running colocalization
analysis by COLOC (−coloc_P 0.05). For each locus, it analyzed all
SNPs within 500 Mb of the SNP identified as the top eQTL in TWAS
and ran coloc.abf using the default parameters and priors. We
applied the following criteria to call a signal causal: PP3 + PP4 ≥ 0.8
and PP4/PP3 ≥ 2 (21).

Joint and conditional analyses
Joint and conditional analysis of TWAS was performed using
a method previously described to determine how much GWAS
signal remains after the expression association from TWAS is
removed (6,16). The analysis is based on the TWAS statistics and a
gene correlation matrix to evaluate the joint or conditional model,
where the correlation matrix can be estimated via predicting the
expression for each TWAS gene and Pearson correlations across
genes were computed. The joint and conditional test was run on
all TWAS hit regions to assess the independence of these associ-
ations within their respective 1 Mb regions. We used FUSION tool
to perform the analysis and generate the regional scatterplots.

FOCUS fine-mapping
To further prioritize candidate susceptibility genes predicted by
TWAS, we performed Bayesian fine-mapping using FOCUS (22).
FOCUS models the correlation structure induced by LD and over-
lapping eQTL weights across predictive models to compute poste-
rior inclusion probabilities for a gene. Using the FOCUS software,
we computed 90% higher confidence gene sets by taking genes
with largest posterior probability until 90% density was explained.

Identifying disease-relevant tissues via
LDSC-SEG
We used LD score regression for specifically expressed genes
(LDSC-SEG) to compute enrichment of tissues in PD (23), which
takes gene expression data and GWAS summary statistics as input
datasets. It uses stratified LD score regression to partition heri-
tability from GWAS summary statistics to specifically expressed
genes to identify disease-relevant tissues. We considered a tissue
as PD relevant when there was enrichment of SNP heritability
(P < 0.05) near genes expressed in that given tissue.

Integration of TWAS candidates with PD blood
transcriptome
To assess the potential dysregulation of TWAS candidate genes
in PD patients, we used the publicly available PD transcriptome
dataset where whole-blood RNA data were collected from 1570
clinically phenotyped individuals (including both cases and con-
trols). The transcriptome analysis and quality control have been
described in ref (24). We obtained the transcriptome analysis
results, available at https://doi.org/10.1038/s43587-021-00088-6,
and determined TWAS candidate genes that were significantly
dysregulated (adjusted P value < 0.05).

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac230#supplementary-data
http://gusevlab.org/projects/fusion/
https://doi.org/10.1038/s43587-021-00088-6
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Association of gene expression with
PD-associated traits
To test for association with PD, we limited the comparison to cases
with neuropathological evidence for PD (e.g. Lewy bodies in Nigra,
limbic system or neocortex) to a control group without patho-
logical diagnosis of PD. We used the ROSMAP study to select 93
individuals with pathological diagnosis of PD ranging from mod-
erate to severe, and presence of Lewy bodies as DLBDX is greater
than 0 as PD cases (39,40). We also selected 72 individuals with
no pathological diagnosis of PD and no presence of Lewy bodies
as controls. We excluded individuals with AD pathology indicated
with clinical and pathological evidence (detailed subject char-
acteristics described in Supplementary Material, Table S6) (17,41).
The association analysis with five PD traits and TWAS candidate
genes was performed using a linear model, adjusting for exper-
imental batch, RIN, sex, age at death and postmortem interval.
We used variancePartition to compute the proportion of variance
explained by candidate genes association with motor and gait,
tremor, bradykinesia and rigidity of extremities (27).

Drosophila models and strains tested
The Drosophila lines carrying UAS-α-Syn have been previously
characterized (14,15). For pan-neuronal expression in Drosophila,
we used the elav-GAL4C155 driver obtained from the Bloom-
ington Drosophila Stock Center (BDSC). The alleles tested as
candidate modifiers of the α-Syn-induced neurodegeneration,
which target the Drosophila homologs of TWAS candidates,
were obtained from the BDSC and Vienna Drosophila Resource
Center (Supplementary Material, Table S7). We used DIOPT
(DRSC Integrative Ortholog Prediction Tool) to determine the
corresponding Drosophila homologs (42). Specifically, we tested
all fly homologs with DIOPT scores equal or greater than 10. In
those cases where the scores are lower than 10, we only tested
the best score.

Drosophila behavioral assay
We used a custom-made automated robot to quantitatively access
neuronal dysfunction in Drosophila using quantitative behavioral
readouts, which are based on the Drosophila startle-induced neg-
ative geotaxis response (28–30). To model the motor readouts as
a function of age, we collected 10 age-matched virgin females per
replica per genotype, and four replicates were collected per geno-
type. Flies are collected at day 1 and transferred into a new vial
with 300 μl of media daily until the end of the experiment. Using
this automated system, flies are taped to the bottom of a plastic
vial and recorded for a period of 7.5 s in which climbing speed
for each fly is analyzed using custom software. In total, three
trials are performed per replicate for each day shown, and four
replicates per genotype are used. We used a linear mixed model
analysis of the variance to analyze each one of four replicates to
obtain statistical significance across genotypes.

Specifically, we analyzed variations in regression between
genotypes and time (additive effect, represented by a shift in the
curve) or the interaction between genotype and time (interactive
effect, represented by a change in the slope of the curve). Using a
stringent threshold for statistical significance (alpha = 0.001), we
calculated the expected statistical power of each of our models
to detect differences. We reported P-values from pairwise post-
hoc tests to determine whether all possible pairs of genotype
curves are different in both models. Differences between positive
controls and experimental perturbations were significant when
P < 0.001. Holm’s procedure was used to adjust P-values for

multiplicity. Code for this analysis is available upon request
from the Botas Laboratory. Graphing and statistical analyses were
performed in R.

We estimated the enrichment of PD modifiers among TWAS
candidate genes based on a large α-Syn Drosophila screening of
the druggable genome as previously described (20% PD modifier
discovery rate among druggable genome) (15).

Drosophila RNA-seq
All flies were raised in identical conditions, and in parallel to the
behavioral assay. Three replicates per genotype/time point were
generated. Each replicate was made of 100 heads collected from
flash frozen age-matched virgin females. mRNA was extracted
using TRIzol (#15596026, Invitrogen) followed by DNAse treat-
ment. A minimum of 500 ng of total DNase-treated RNA was
used per replicate. Samples were prepared using mRNA TruSeq
Stranded library preparation followed by Novaseq processing to
generate 60 M paired reads per replicate (Illumina).

PPI Network analysis
String DB release v11.5 was used to compute the connections
between candidate nodes using medium stringency. Markov Clus-
tering Algorithm followed by pathway enrichment of each cluster
was used to identify the most significantly enriched biological
functions (fdr < 0.05). Cytoscape 3.9.1 was used to render the
network, color it and arrange it for publication.

Supplementary Material
Supplementary Material is available at HMG online.
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